

Cautionary Notes

This presentation ("Presentation") is for informational purposes only. This Presentation shall not constitute an offer to sell, or the solicitation of an offer to buy, any securities, nor shall there be any sale of securities in any states or jurisdictions in which such offer, solicitation or sale would be unlawful. This Presentation has been prepared to assist interested parties in making their own evaluation with respect to a potential business combination between Rigetti & Co. Inc. ("Rigetti") and Supernova Partners Acquisition Company II. Ltd. ("Supernova") and the related transactions (the "Proposed Business Combination") and for no other purpose. These materials are exclusively for the use of the party or the parties to whom they have been provided by representatives of Rigetti and Supernova. By accepting these materials, the recipient acknowledges and agrees that he, she or it (a) will maintain the information and data contained herein in the strictest of confidence and will not, under any circumstances whatsoever, reproduce these materials, in whole or in part, or disclose any of the contents hereof or the information and data contained herein to any other person without the prior written consent of Rigetti and Supernova, (b) is not subject to any contractual or other obligation to disclose these materials to any other person or entity, (c) will return these materials, and any other materials that the recipient may have received in the course of considering an investment in Supernova and Rigetti and (d) will promptly notify Rigetti and Supernova and their respective representatives of any unauthorized release, disclosure or use of these materials or the information and data contained herein. Furthermore, all or a portion of the information contained in these materials may constitute material non-public information of Rigetti, Supernova and their affiliates, and other parties that may be referred to in the context of those discussions. By your acceptance of this Presentation, you acknowledge that applicable securities laws restrict a person from purchasing or selling securities of a person with tradeable securities from communicating such information to any other person under circumstances in which it is reasonably foreseeable that such person is likely to purchase or sell such securities.

Certain information included herein describes or assumes the expected terms that will be included in the agreements to be entered into by the parties to the Proposed Business Combination. Such agreements are under negotiation and subject to change. The consummation of the Proposed Business Combination is also subject to other various risks and contingencies, including customary closing conditions. There can be no assurance that the Proposed Business Combination will be consummated with the terms described herein or otherwise. As such, the subject matter of these materials is evolving and is subject to further change by Rigetti and Supernova in their joint and absolute discretion.

Neither the Securities and Exchange Commission nor any securities commission of any other U.S. or non-U.S. jurisdiction has approved or disapproved of the Proposed Business Combination presented herein, or determined that this Presentation is truthful or complete. No representations or warranties, express or implied, are given in, or in respect of, this Presentation. To the fullest extent permitted by law in no circumstances will Supernova, Rigetti or any of their respective subsidiaries, stockholders, affiliates, representatives, directors, officers, employees, advisers or agents be responsible or liable for a direct, indirect or consequential loss or loss of profit arising from the use of the Presentation, its contents, its omissions, reliance on the information contained within it, or on opinions communicated in relation thereto or otherwise arising in connection therewith.

Industry and market data used in this Presentation have been obtained from third-party industry publications and sources as well as from research reports prepared for other purposes. Neither Supernova nor Rigetti has independently verified the data obtained from these sources and cannot assure you of the data's accuracy or completeness. This data is subject to change. In addition, this Presentation does not purport to be all-inclusive or to contain all of the information that may be required to make a full analysis of Rigetti or the Proposed Business

Combination. Viewers of this Presentation should each make their own evaluation of Rigetti and of the relevance and adequacy of the information and should make such other investigations as they deem necessary. References in this Presentation to our "partners" or "partnerships" with technology companies, governmental entities, universities or others do not denote that our relationship with any such party is in a legal partnership form, but rather is a generic reference to our contractual relationship with such party.

Forward Looking Statements - Certain statements included in this Presentation that are not historical facts are forward-looking statements for purposes of the safe harbor provisions under the United States Private Securities Litigation Reform Act of 1995. Forward-looking statements generally are accompanied by words such as "believe," "may," "will," "estimate," "continue," "anticipate," "intend," "expect," "should," "would," "plan," "predict," "potential," "seem," "seek," "future," "outlook," and similar expressions that predict or indicate future events or trends or that are not statements of historical matters. These forward-looking statements include, but are not limited to, statements regarding estimates and forecasts of other financial and performance metrics and projections of market opportunity. These statements are based on various assumptions, whether or not identified in this Presentation, and on the current expectations of the respective management of Rigetti and Supernova and are not predictions of actual performance. These forward-looking statements are provided for illustrative purposes only and are not intended to serve as, and must not be relied on by an investor as, a guarantee, an assurance, a prediction or a definitive statement of fact or probability. Actual events and circumstances are difficult or impossible to predict and will differ from assumptions. Many actual events and circumstances are beyond the control of Rigetti and Supernova. These forward-looking statements are subject to a number of risks and uncertainties, including changes in domestic and foreign business, market, financial, political, and legal conditions; the inability of the parties to successfully or timely consummate the Proposed Business Combination, including the risk that any regulatory approvals are not obtained, are delayed or are subject to unanticipated conditions that could adversely affect the combined company or the expected benefits of the Proposed Business Combination or that the approval of the stockholders of Supernova or Rigetti is not obtained; failure to realize the anticipated benefits of the Proposed Business Combination; risks relating to the uncertainty of the projected financial information with respect to Rigetti; risks related to the performance of Rigetti's business and the timing of expected business or revenue milestones; the effects of competition on Rigetti's business; the amount of redemption requests made by Supernova's stockholders; the ability of Supernova or Rigetti to issue equity or equity-linked securities or obtain debt financing in connection with the Proposed Business Combination or in the future; and those factors discussed in Supernova's final prospectus that forms a part of Supernova's Registration Statement on Form S-1 (Reg. No. 333-252963), filed with the SEC pursuant to Rule 424(b)(4) on March 3, 2021 (the "Prospectus") under the heading "Risk Factors," and other documents Supernova has filed, or will file, with the SEC. If any of these risks materialize or our assumptions prove incorrect, actual results could differ materially from the results implied by these forward-looking statements. There may be additional risks that neither Supernova nor Rigetti presently know, or that Supernova or Rigetti currently believe are immaterial, that could also cause actual results to differ from those contained in the forward-looking statements. In addition, forward-looking statements reflect Supernova's and Rigetti's expectations, plans, or forecasts of future events and views as of the date of this Presentation. Supernova and Rigetti anticipate that subsequent events and developments will cause Supernova's and Rigetti's assessments to change. However, while Supernova and Rigetti may elect to update these forward-looking statements at some point in the future, Supernova and Rigetti specifically disclaim any obligation to do so. These forward-looking statements should not be relied upon as representing Supernova's and Rigetti's assessments of any date subsequent to the date of this Presentation. Accordingly, undue reliance should not be placed upon the forward-looking statements.

Cautionary Notes (continued)

Use of Projections - This Presentation contains projected financial information. Such projected financial information constitutes forward-looking information, and is for illustrative purposes only and should not be relied upon as necessarily being indicative of future results. The assumptions and estimates underlying such financial forecast information are inherently uncertain and are subject to a wide variety of significant business, economic, competitive, and other risks and uncertainties. See "Forward-Looking Statements" above. Actual results may differ materially from the results contemplated by the financial forecast information contained in this Presentation, and the inclusion of such information in this Presentation should not be regarded as a representation by any person that the results reflected in such forecasts will be achieved.

Use of Data - The data contained herein is derived from various internal and external sources. No representation is made as to the reasonableness of the assumptions made within or the accuracy or completeness of any projections or modeling or any other information contained herein. Any data on past performance or modeling contained herein is not an indication as to future performance. Supernova and Rigetti assume no obligation to update the information in this presentation.

Trademarks - This presentation contains trademarks, service marks, trade names and copyrights of other companies, which are property of their respective owners.

Use of Non-GAAP Financial Metrics and Other Key Financial Metrics - This presentation includes certain non-GAAP financial measures (including on a forward-looking basis) such as EBITDA and EBITDA Margin. Rigetti defines EBITDA as net income (loss), adjusted for interest expense, depreciation and amortization, stock-based compensation and income taxes and one-off non-recurring items. EBITDA Margin is EBITDA divided by total revenue. These non-GAAP measures are an addition, and not a substitute for or superior to measures of financial performance prepared in accordance with GAAP and should not be considered as an alternative to net income, operating income or any other performance measures derived in accordance with GAAP.

Reconciliations of non-GAAP measures to their most directly comparable GAAP counterparts are included in the Appendix to this presentation. Rigetti believes that these non-GAAP measures of financial results (including on a forward-looking basis) provide useful supplemental information to investors about Rigetti. Rigetti's management uses forward looking non-GAAP measures to evaluate Rigetti's projected financial and operating performance. However, there are a number of limitations related to the use of these non-GAAP measures and their nearest GAAP equivalents. For example, other companies may calculate non-GAAP measures differently, or may use other measures to calculate their financial performance, and therefore Rigetti's non-GAAP measures may not be directly comparable to similarly titled measures of other companies.

Morgan Stanley & Co. LLC (Morgan Stanley) and Deutsche Bank Securities, Inc. (Deutsche Bank) are acting as placement agents in connection with the business combination. In addition, Morgan Stanley is acting as financial advisor to Supernova and Deutsche Bank is acting as financial advisor to Rigetti. Morgan Stanley, Deutsche Bank, their respective affiliates and any of their respective employees, directors, officers, contractors, advisors, members, successors, representatives or agents make no representation or warranty as to the accuracy or completeness of this presentation, and shall have no liability for any representations (expressed or implied) contained in, or for any omissions from, this presentation or any other written or oral communications transmitted to the recipient in the course of its evaluation of Rigetti. The only information that will have any legal effect and upon which an interested

party may rely upon will be that in such representations and warranties as may be contained in a definitive agreement between such party and Rigetti relating to a Transaction, if any.

Additional Information and Where to Find It - Supernova intends to file a registration statement on Form S-4 with the Securities Exchange Commission (the "SEC"), which will include a proxy statement/prospectus, that will be both the proxy statement to be distributed to holders of Supernova's common shares in connection with its solicitation of proxies for the vote by Supernova's shareholders with respect to the proposed business combination and other matters as may be described in the registration statement, as well as the prospectus relating to the offer and sale of the securities to be issued in the business combination. After the registration statement is declared effective, Supernova will mail a definitive proxy statement/prospectus and other relevant documents to its shareholders. This presentation does not contain all the information that should be considered concerning the proposed business combination and is not intended to form the basis of any investment decision or any other decision in respect of the business combination. Supernova's shareholders and other interested persons are advised to read, when available, the preliminary proxy statement/prospectus included in the registration statement and the amendments thereto and the definitive proxy statement/prospectus and other documents filed in connection with the proposed business combination, as these materials will contain important information about Rigetti, Supernova and the business combination. When available, the definitive proxy statement/prospectus and other relevant materials for the proposed business combination will be mailed to shareholders of Supernova as of a record date to be established for voting on the proposed business combination. Shareholders will also be able to obtain copies of the preliminary proxy statement, the definitive proxy statement and other documents filed with the SEC, without charge, once available, at the SEC's website at www.sec.gov, or by directing a request to Supernova's secretary at 4301 50th Street NW, Suite 300 PMB 1044, Washington, D.C. 20016, (202) 918-7050.

Participants in the Solicitation - Supernova and its directors and executive officers may be deemed participants in the solicitation of proxies from Supernova's shareholders with respect to the proposed business combination. A list of the names of those directors and executive officers and a description of their interests in Supernova is contained in Supernova's prospectus dated March 3, 2021 relating to its initial public offering, which was filed with the SEC and is available free of charge at the SEC's website at www.sec.gov. To the extent such holdings of Supernova's securities may have changed since that time, such changes have been or will be reflected on Statements of Change in Ownership on Form 4 filed with the SEC. Additional information regarding the interests of such participants will be contained in the proxy statement/prospectus for the proposed business combination when available.

Rigetti and its directors and executive officers may also be deemed to be participants in the solicitation of proxies from the shareholders of Supernova in connection with the proposed business combination. A list of the names of such directors and executive officers and information regarding their interests in the proposed business combination will be included in the proxy statement/prospectus for the proposed business combination when available.

No Offer or Solicitation - This presentation does not constitute (i) a solicitation of a proxy, consent or authorization with respect to any securities or in respect of the proposed business combination or (ii) an offer to sell, a solicitation of an offer to buy, or a recommendation to purchase any security of Supernova, Rigetti, or any of their respective affiliates.

Supernova Partners Acquisition Company II

- Supernova Partners Acquisition Company II, Inc. ("Supernova"; NYSE:SNII) raised \$345 million in March 2021
- Diverse management team with deep sector expertise and decades of operational, investment and acquisition experience
- Supernova Partners Acquisition Company I raised \$402.5 million in an IPO in October 2020 and has signed a definitive merger agreement with Offerpad, a digital real estate platform, and Supernova Partners Acquisition Company III raised \$281 million in an IPO in March 2021

World-changing opportunity

Massive untapped revenue opportunity expected to exceed current HPC and cloud hardware markets.

Winning technology

Superconducting quantum computers have the most qubits, the lowest error rates, and are scaling the fastest.

Distinctive approach

Proprietary chip architecture accelerates scaling and full-stack strategy shortens path to key business inflection points.

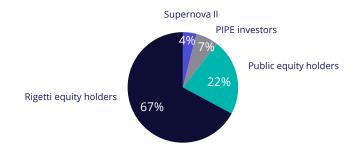
Team to win

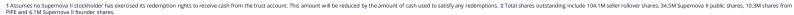
8+ year track record of pioneering leadership with multiple industry firsts, 100+ patents and applications, combined with a deep and experienced team across business and technology.

Transaction Summary

Transaction overview

- Highly attractive opportunity to invest at the inflection point
 - Attractive entry multiple relative to public peers and recent transactions
- \$1,152M post-money enterprise value based on 1.9x 2026E revenue of \$594M
- Existing Rigetti shareholders and management rolling 100% of equity
- Transaction will be funded by \$103M PIPE, Supernova II cash in trust of \$345M¹
 - Net cash proceeds to Rigetti's balance sheet to accelerate product development and expand operations


Pro forma valuation (\$M, except per share data)


Total shares outstanding	155.0
Price per share	\$10.00
Equity value	\$1,550
Less: net cash	(\$397)
Total enterprise value	\$1,152
	<u>2026E</u>
TEV/Revenue	1.9x
TEV/EBITDA	3.0x

Sources and uses (\$M)

Sources		Uses	
Supernova II cash in trust ¹	345	Pro forma cash	398
Issuance of shares	1,041	Rigetti equity holder stock consideration	1,041
PIPE shareholders	103	Deal expenses	50
Total sources	\$1,488	Total uses	\$1,488

Pro forma illustrative ownership breakdown

Note Years represent calendar year end. Excludes direct investment in Rigett by strategic partner. Rigetti cash and debt balances as of August 31, 2021. 29% of Sponsor promote subject to vesting; wests in full if, at any time during the Syear period post-closing, the WMAP of pubco shares is greater than or equal to \$112.50 for any 20 trading days within a 30 consecutive trading day window, also vests upon the consummation of a liquidation, merger, capital stock exchange, reorganization or other similar transaction where the shares can be exchanged for cash or marketable securities with an aggregate value equal to or greater than \$12.50 per share. Excludes the impact of Supernova It's warrants (public or private). Due to rounding, numbers presented may not add up precisely to the totals provided and percentages may not precisely reflect the absolute figures

Chad Rigetti, PhD Founder and CEO IIM Yale

- Founded Rigetti Computing in 2013 as the first company focused on developing universal, gate-model quantum computers
- Raised \$200M+ in venture funding and recruited world class board and executive team
- Former researcher at IBM quantum computing group (2010-2013)
- Postdoctoral researcher at Yale focused on quantum-limited amplifiers (2009-2010)
- Ph.D. in applied physics from Yale focused on two-qubit gates for superconducting qubits (2002-2009)
- Developed first all-microwave two-qubit gate methods for superconducting qubits, an approach now used broadly in the industry
- 4,520 citations | h-index 31 | i10-index 53 | 38 issued US patents

FOUNDED

TOTAL INVESTMENT

PATENTS & APPLICATIONS¹

FMPLOYEES 130+

TECHNICAL PHDs

TCV TO DATE²

\$40M+

\$200M+

- Former CEO, Rightside (Nasdaq: NAME)
- EVP Demand Media, IPO 2011
- Built organizations, raised \$800M+ in capital, led acquisitions and multiple successful exits
- Investor in Rigetti for 8 years
- University of Regina, BSc Computer Science

Mission:

Build the world's most powerful computers to help solve humanity's most important and pressing problems.

Pioneering industry leadership and operational execution

2014

Invented & patented

hybrid quantum-classical co-processor architecture to practical quantum computing

2016

Rigetti Fab-1 is commissioned as the first and only dedicated quantum chip fabrication facility

2018

First chemically accurate simulation on a cloud quantum computer

2020

Selected to build **first** commercial quantum computer in the UK

2013

Rigetti & Co, Inc. founded by Chad Rigetti, PhD as the first universal pureplay quantum computing company

2015

Established facility in Berkeley, CA with leading quantum computing modality: superconducting qubits

2017

Rigetti becomes 2nd company in history to build and deploy a universal gate-model quantum computer over the cloud

2019

32-qubit system
developed and
launched on Amazon
Web Services

2021

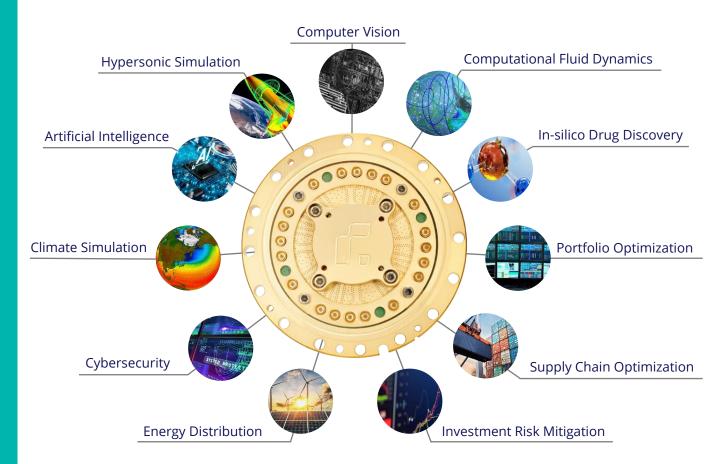
First scalable quantum chip is demonstrated based on Rigetti proprietary modular architecture

Pioneering industry leadership and operational execution

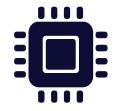
2015 Rigetti 3Q

2017-2018 Rigetti 4Q/8Q

2019-present


1 Quantum computing is a world-changing opportunity.

In the next decade one quantum computer could be more powerful than today's entire global cloud.



Potential to unlock solutions to the most pressing and **important** problems while creating unimagined opportunities

Harnessing nature's operating system unlocks exponential computational power

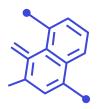
Classical Bits

(Binary)

Either 0 or 1

Solves problems by evaluating solutions **sequentially**.

Quantum Bits


(Qubits)

Both 0 and 1 at the same time

Solves problems by evaluating solutions **simultaneously.**

Harnessing nature's operating system unlocks exponential computational power

e.g., computing power needed to discover the next penicillin

A classical computer with more transistors (1086) than there are atoms in the observable universe

A quantum computer with 286 qubits

Enhance human health and longevity

Problem

Developing treatments for leading causes of death requires understanding the biochemical properties of potential therapies.1

Constraint

Exact modeling of molecular and materials properties grows exponentially with each added atom.

Quantum Solution

Direct quantum simulations may better predict properties, enabling candidate therapies to reach market faster.

Sample partners on quantum simulation:

Clean energy from the same reactions that power the sun

Problem

Reliance on fossil fuels is accelerating climate change. Global energy use is expected to increase by 50% by 2050.

Constraint

Energy production in fusion reactors requires compressing plasma into extreme conditions where quantum effects cause exponentially complex behavior.

Quantum Solution

Insights from quantum simulation may produce more realistic physical models of fusion, accelerating the path to clean energy.

Sample partners on fusion energy:

Office of Science

Increase the speed and accuracy of market insights

Problem

Optimizing investment positions and pricing decisions depends on accurate quantitative models that can swiftly respond to changing market conditions.

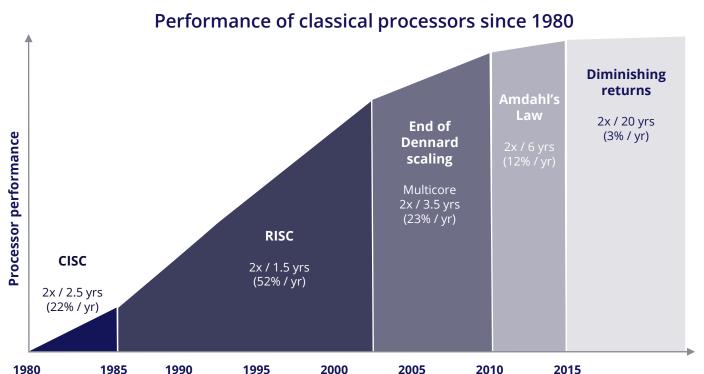
Constraint

Realistic models incorporating available data can be too slow and expensive to inform real-time decision making.

Quantum Solution

Quantum enhanced machine learning and Monte Carlo simulation may yield quantitative insights in a fraction of the time, allowing faster responses to market changes.

Sample partners on finance applications:

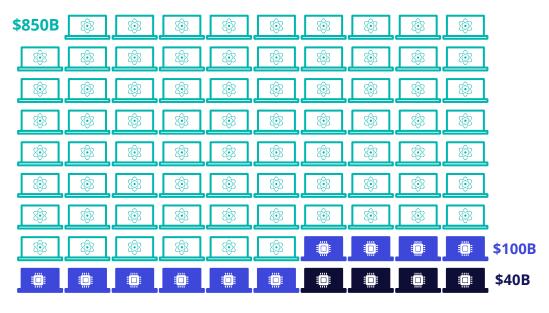


Top-tier global banks

1 "Goldman Sachs predicts quantum computing 5 years away from use in markets." Financial Times, 29 Apr. 2021. 2 Giurgica-Tiron, Tudor, et al. "Low Depth Algorithms for Quantum Amplitude Estimation." ArXiv:2012.03348 [Quant-

Classical computers have hit fundamental limits

"Moore's Law has finished."


- Jensen Huang, 2019 CEO, NVIDIA

"Moore's Law is dead. Moore's Law is over."

- Mike Muller, 2018 CTO, ARM

Massive untapped demand when quantum computers meet requirements for practical workloads

- Forecasted Quantum Computing Generated Operating Income^{1,2}
- Current Cloud HW Market³
- Current HPC Market⁴

Requirements for practical workloads

Scale: >1000 qubits

Error Rates: < 0.5%

Clock Speed: >1 MHz

Fully Programmable & Universal

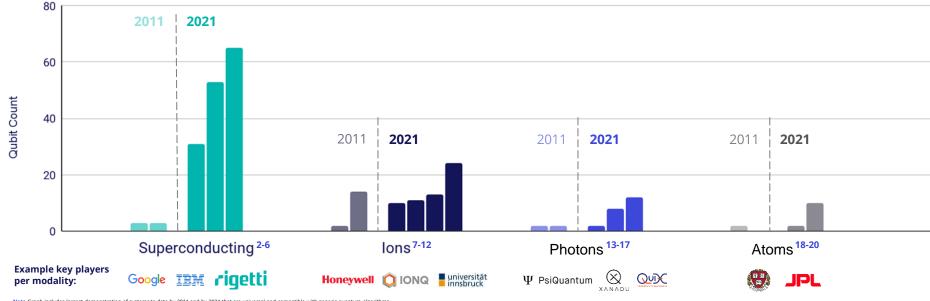
(run general quantum algorithms)

Manufacturable

Co-processor

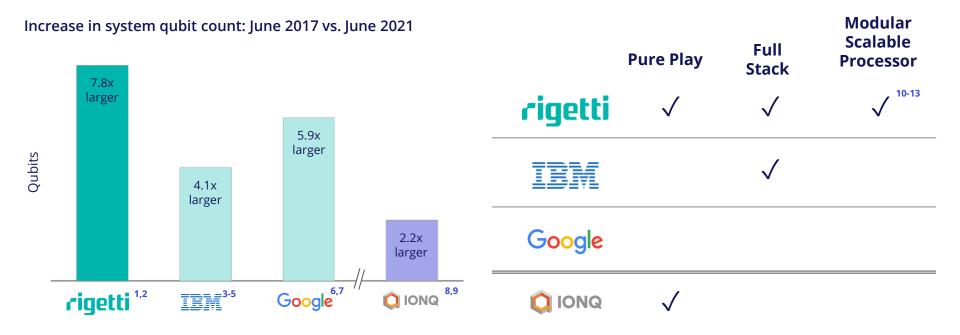
(can be used alongside traditional computers)

Delivered over the cloud



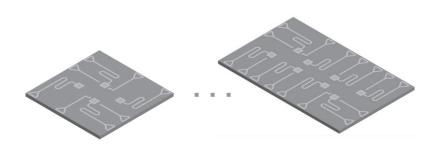
2 Rigetti scalable chip technology can unlock the market.

Superconducting quantum computers have the most qubits, the lowest error rates¹, and are scaling the fastest


Progress in scaling universal gate-model quantum computing systems by hardware modality: 2011 to 2021

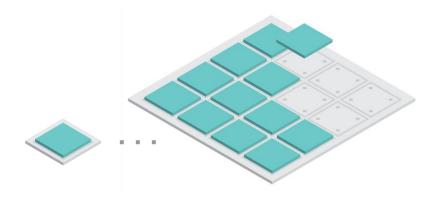
Note Graph includes largest demonstration of systems to date by 2011 and by 2021 that are universal and compatible with generic quantum algorithms
1 Best estimated two-quibt gate fidelity as of June 2021 on systems larger than two quibts are 93,98% (mediajon a) 57% superconducting; 9,95.5% (pypical) on 10Q for ions*, 98.9% (typical) on 12Q for photons** and 97.4% (averaged) on 10Q for atoms.** In order as appear on the graph: 2 DiCarlo, L., et al. "Preparation and Measurement of Three-Quibt Entanglement in a Superconducting Circuit." Nature, vol. 467, no. 7315, Sept. 2010, pp. 570–3.47%.or., 2013, arXiv.org, doi:10.1038/nature09416. 3 Neeley, M., et al. "Generation of Three-Quibt Entangled States Using Superconducting Plane Quibtics." Nature, vol. 467, no. 7315, Sept. 2010, pp. 570–3.47%.or., 2013, arXiv.org, doi:10.1038/nature09416. 3 Neeley, M., et al. "Generation of Three-Quibt Entangled States Using Superconducting Plane Quibtics." Nature, vol. 467, no. 7315, Sept. 2010, pp. 570–570.
Quantum Processors via Laser-Annealing of Transmon Quibtics." ArXiv.2012.08475 (Quant-Ph), Dec. 2020. arXiv.org. 7 Benhelm, pt. et al. "Covariant universal device Using States (Plane) Plane Circuit Plane) Plane Circuit Plane Circui

Among industry leaders, Rigetti is the only pure play superconducting company and is scaling fastest



^{1.} Reagor, M., et al. "Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice," Science Advances, vol. 4, no. 2, Feb. 2018, p. eaao3603, arXiv.org, doi:10.1126/sciadv.aao3603.2 rigetti.com, June 2021. 3"A Quantum Experience at Maker Faire," IBM Research Blog, 19 May 2017. 4 Wang, Yuanhao, et al. "16-Qubit IBM Universal Quantum Computer Can Be Fully Entangled." Npj Quantum Information, vol. 4, no. 1, Sept. 2018, pp. 1-6. www.nature.com, doi:10.1038/s41534-018-0095-x. 5 Zhang, Eric J., et al. "High-Fidelity Superconducting Quantum Processors via Laser-Annealing of Transmor Qubits." ArXiv:2012.08475 [Quant-Ph], Dec. 2020. arXiv.org, doi:10.1038/nature14270. 7 Avture, vol. 519, no. 7541, Mar. 2015, pp. 66-69. arXiv.org, doi:10.1038/nature14270. 7 Avture, vol. 519, no. 7541, Mar. 2015, pp. 66-69. arXiv.org, doi:10.1038/nature14270. 7 Avture, vol. 519, no. 7541, Mar. 2015, pp. 66-69. arXiv.org, doi:10.1038/nature14270. 7 Avture, vol. 536, no. 7614, Aug. 7079, Oct. 2019, pp. 505-10. www.nature.com, doi:10.1038/s4158-019-1666-5. 8 Bebnath, S., et al. "Demonstration of a Small Programmable Quantum Computer with Atomic Qubits." Nature, vol. 536, no. 7614, Aug. 507, aug. 2017, arXiv.org, 11 O'Brien, William, et al. "Superconducting Crucius." ArXiv:1708.02226 [Physics, Physics:Quant-Ph], Aug. 2017, arXiv.org, 11 O'Brien, William, et al. "Superconducting Crucius." ArXiv:1708.022219 [Physics, Physics:Quant-Ph], Aug. 2017, arXiv.org, 12 3D signalling patents pending 13 Gold, Alysson, et al. "Entanglement Across Separate Silicon Dies in a Modular Superconducting Qubit Device." ArXiv:1708.022319 [ArXiv.org, 12 arXiv.org, 12 arXiv.org, 13 arXiv.org, 13 arXiv.org, 14 arXiv.org, 14 arXiv.org. 14 arXiv.org. 14 arXiv.org. 14 arXiv.org. 14 arXiv.org. 14 arXiv.org. 15 arXiv.org. 15 arXiv.org. 15 arXiv.org. 15 arXiv.org. 15 arXiv.org. 15 arXiv.org. 16 arXiv.org. 17 arXiv.org. 17 arXiv.org. 18 arXiv.org. 18 arXiv.org. 18 arXiv.org. 18 arXiv.org. 19 arXiv.org. 19 arXiv.org. 19 arXiv.org. 19 arXiv.org. 19 arXiv.or

Proprietary modular chip architecture eliminates key scaling roadblocks


Typical Quantum Chip

Single-chip processors

- Entire re-design with each generation
- Component yield requirements increase exponentially with qubit count
- Scaling is slow and expensive

rigetti
Proprietary Quantum Chip

Large-scale processors built from identical tiles

- Modular
- Manufacturable
- Scalable

Proprietary technology unlocked by 6+ years of fabdriven innovation

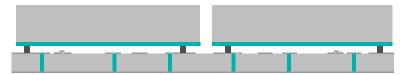
Superconducting caps

Developed 2015 - 2018

Facilitates scaling and enhances performance²

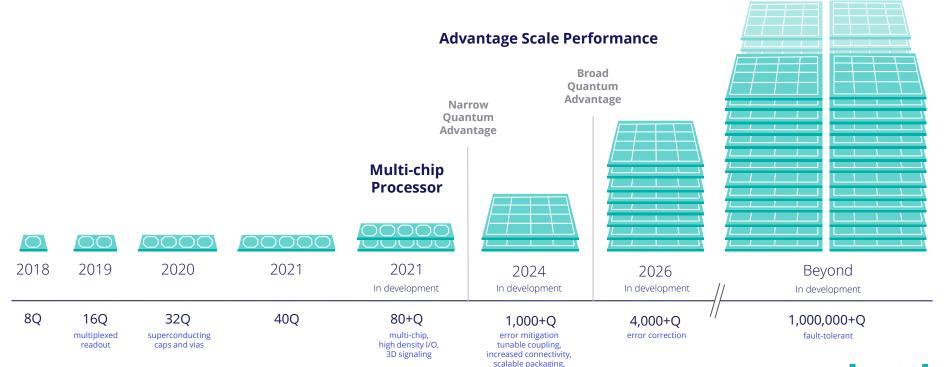
Superconducting TSVs

Developed 2016 - 2019


Isolates on-chip components and maximizes performance³

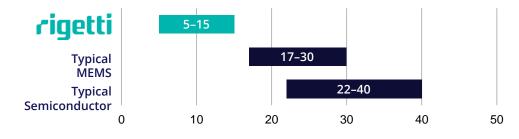
Interchip Coupling

Developed 2018 - 2021


Interchip coupling enables fast gates and scaling qubit fabric across multiple chips⁴

Modular system architecture designed for rapid scaling to advantage and beyond

Large Scale Fault Tolerance

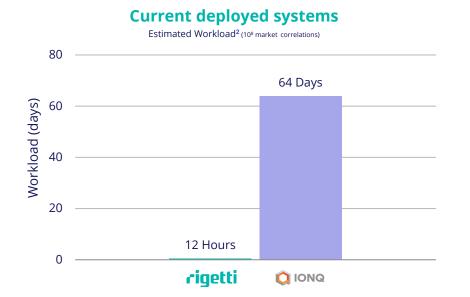


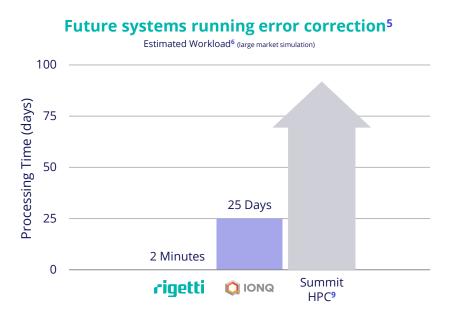
Distinctive quantum chip manufacturing drives core value creation

Rapid design-fab-test iteration loops and short production cycles create compounding advantages over time

Processing Lead Time (weeks)

Leading research institutions leverage unique Rigetti quantum foundry capabilities

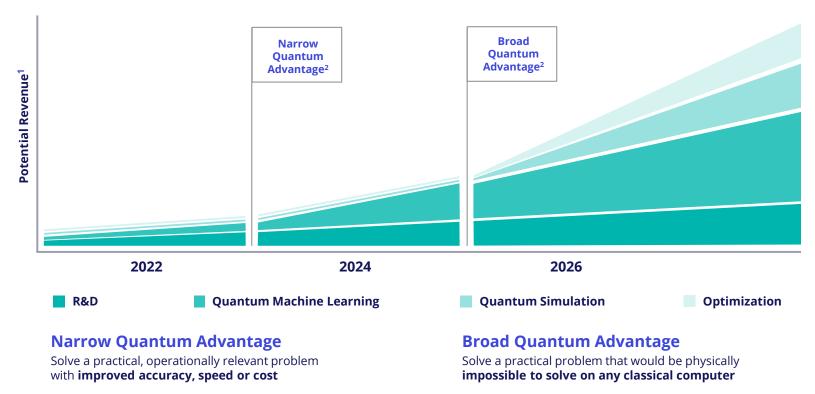

Rigetti is positioned to be the industry leader.



Intrinsic and durable technology advantages can give Rigetti a larger market opportunity than competitors

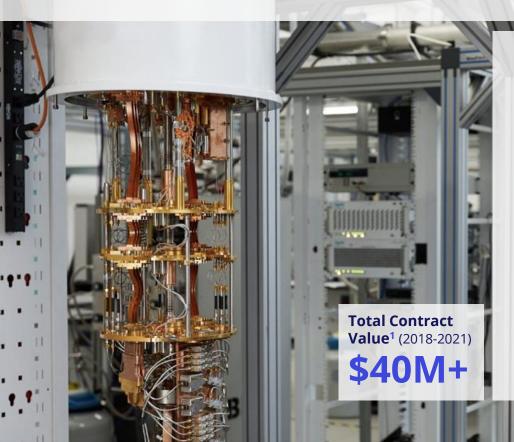
>100x speed advantage enables solutions to a broader set of practical problems¹

e.g., market trajectory analysis for portfolio optimization



Note Internal company estimates based on empirical data from Rigetti and IonQ, and published processor specifications and data.

1 Combinatorial optimization task (QAOA(3)) for graph bisection problem, for example on market graphs [4], with execution time empirically measured as: t = (# shots to target solution) x (quantum circuit runtime / shot). 2 Evaluated as (t x # jobs) for the largest problem instance that fits on lonQ (2048 unique bisections); each job generates a target solution to the market graph. 3 Farhi, Edward, et al. "A Quantum Approximate Optimization Algorithm." ArXiv:1411.4028 [Quant-Ph], Nov. 2014. arXiv.org. 4 Boginski, Vladimir, et al. On Structural Properties of the Market Graph. 2003. 5 Fault-tolerant quantum computation runs at a clock speed set by the duration of an error- correction cycle, following standard modality assumptions: Rigetti at 1 µs [Kelly, J., et al. "State Preservation by Repetitive Error Detection in a Superconducting Quantum Circuit." Nature, vol. 519, no. 7541, Mar. 2015, pp. 66-69. arXiv.org, doi:10.1038/nature14270.] and lonQ at 22 ms [8]. 6 Resource estimates are order of 108 T-gates, e.g., derivatives pricing applications: Chakrabarti, et al., Quantum 5, 463 (2021). Processing time estimated as: t = (108 cycles) x (cycle time). 7 Kelly, J., et al. "State Preservation by Repetitive Error Detection in a Superconducting Quantum Circuit." Nature, vol. 519, no. 7541, Mar. 2015, pp. 66-69. arXiv.org, doi:10.1038/nature14270. 8 See Table VI: Bermudez, et al, PRX 7, 041061 (2017). 9 Both platforms expected to significantly outperform supercomputers for relevant tasks.



Rigetti is poised to win the race to critical inflection points

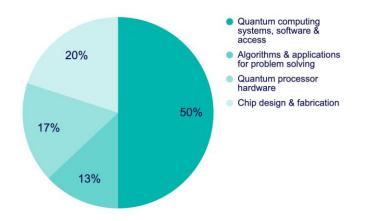
Partners + customers recognize Rigetti technology leadership

Rigetti is the lead industry partner of a US Quantum Information Research Center

Superconducting Quantum Materials and Systems Center:

- One of five national DOE QIS Research Centers
- Five-year, \$115M effort
- 20 partner institutions with 80+ experts from academia, industry, and government

Other customers accelerating path to advantage:



Strategic IP portfolio >100 patents and applications

Patent portfolio is designed to:1,2

- Protect Rigetti full-stack technology across hardware, software and services
- Protect the IP space for Rigetti technology roadmap
- Capture IP space beyond the current roadmap for future development of quantum computing in the 10–15 year time frame

Rigetti IP Portfolio Areas:2

Key patented technology areas

Quantum computing systems, software & access

From hybrid quantum-classical computing and low-latency cloud platform architectures to gate formation methodologies for improved gate fidelity.

First Priority Date: 2014³

Algorithms & applications for problem solving

From quantum instruction language compiler to quantum processor simulator.

First Priority Date: 2016³

Quantum processor hardware

From interchip coupling and multi-chip modules to 3-D scaling and high density connectivity.

First Priority Date: 2015³

Chip design & fabrication

From combined silicon semiconductors and MEMS process technologies to designs for improving processor fidelity.

First Priority Date: 2014³

World-class technical talent drives culture of innovation

130+

100+

Technical staff

40+

PhDs

1K+

Peer reviewed publications

Employees

PhDs from:

Caltech

Extraordinary founder-led leadership team and board

Management team

Chad Rigetti Founder, CEO and Chairman

Mike Harburn SVP. Hardware

Taryn Naidu COO

Mandy Birch

SVP. Partnerships

Brian Sereda

CFO

David Rivas

SVP. Software

& Sun NOKIA

Rick Danis General Counsel

KYMETA

David Cowan Bessemer, Co-founder of Verisign, Midas List Hall of Fame

Current board members / select advisors

Alissa **Fitzgerald AMFitzgerald &** Associates, MIG Hall of Fame

Ray O. Johnson Former CTO. Lockheed Martin

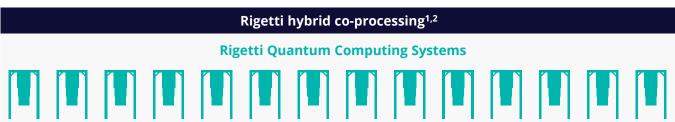
Iackie Kaweck SVP, HR

Leapfrog (

Peter Pace Former 16th Chairman of the Joint Chiefs of Staff

Cathy McCarthy Founder of Recros **Medica, Former President** and CEO of SM&A

Michael Rogers Former 17th **Director of NSA and US Navy Admiral**

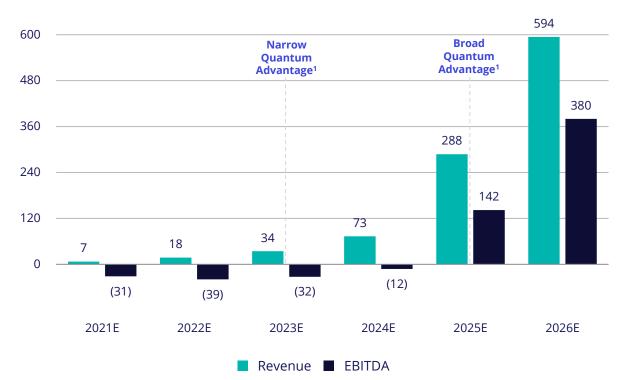


Rigetti Quantum Cloud Services delivers the capability for practical workloads to the mainstream market

Pure Play Advantage

Rigetti plans to grow its partnerships with the existing cloud and HPC providers to deliver Quantum Computing as a Service (QCaaS) to end users.

Production quantum computing system integrated with QCS



4 Financials and transaction overview.

Positioned for explosive revenue growth

Summary forecasted financial data (\$M)

Revenue CAGR:

140% (2021-2026)

Key Growth Drivers:

- Achieving quantum advantage
- New production system releases
- Maturing quantum ecosystem

Commentary

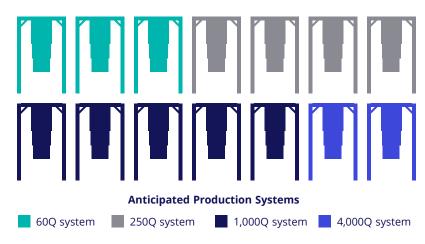
Revenue growth supported by long-term development contracts and strong partnerships with QCaaS distribution and direct channels.

Post quantum advantage milestones, the majority of revenue shifts from development contracts to QCaaS.

OpEx increase is primarily driven by R&D of next-generation systems and headcount growth in engineering and go-to-market.

Note Years represent calendar year end. Prepared on the basis of certain technical, market, competitive and other assumptions to be subsequently described in further detail, and which may not be satisfied. As a result, these projections are subject to a high degree of uncertainty and may not be achieved within the time-frames described or at all

Rapidly increasing revenue per customer and system

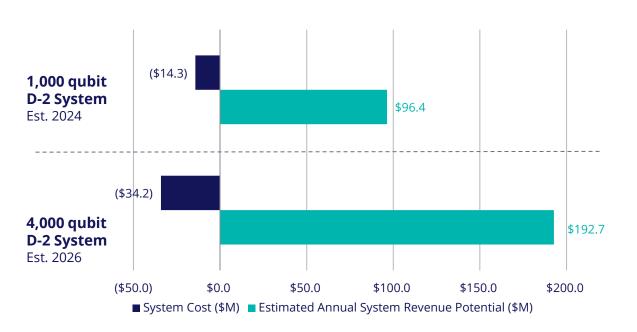

2026 QCaaS Demand Projections

	Description	Number of customers	Revenue per customer
QCaaS Direct Customers	Deep full-stack integration of workloads through QCS	100+	\$0.8 - \$13M
QCaaS Distribution Customers	Partnered distribution through major public, private, and HPC clouds	5-10	\$9 - \$146M

Building from our existing customer base, we expect **accelerating growth in revenue per customer and number of customers.**

Customer growth driven by quantum advantage demonstrations across machine learning, optimization, and simulation in numerous industries.

2026 QCaaS Delivery Projections


Multiple generations of advantage-performance systems projected to be available through QCS in 2026.

The projected average annual revenue per system scales to \$40M+ in 2026.

An estimated **14 production systems** required to meet demand in 2026 (all fit in a standard size basketball court).

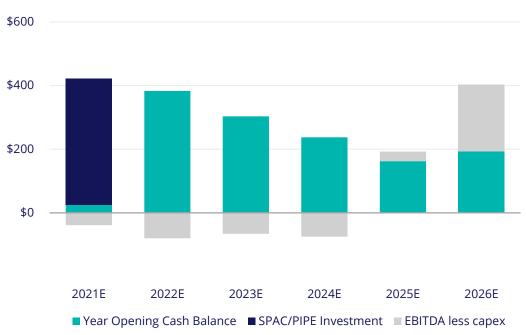
Revenue potential increases with each system generation

System Costs

Estimated system costs increase with the scaling of system size in new generations but the **projected gross margin per system increases with each generation**.

Post quantum advantage, there are opportunities for system cost reduction through economies of scale and engineering development.

System Revenue


The estimated **revenue potential increases with each system** as the computational power increases exponentially with the qubit count.

Increasing computational power with each generation will unlock solutions to a broader set of problems across industries.

Capitalized to unlock market demand

Cash position and EBITDA less capex (\$M)

Cash Balance

The net proceeds of this transaction are expected to fund Rigetti to EBITDA breakeven by 2025.

EBITDA less capex

Spending increases to scale technical teams and invest in infrastructure needed to parallelize the development of quantum advantage grade systems.

Rigetti will make incremental investments in its existing quantum foundry capabilities to scale system count to meet quantum advantage demand.

Upon closing of the transaction, Rigetti will trade on the NYSE under the symbol RGTI.

We believe Rigetti is poised to be the global leader in quantum computing and can have a profound positive impact on human society.

Leading Investors

Leading Customers and Partners

Fully Capitalized Balance Sheet

Transaction allows Rigetti to accelerate product development, consolidate its QCaaS market leadership, and scale operations to bring the positive impact of quantum computing to the world.

World-changing opportunity

Massive untapped revenue opportunity expected to exceed current HPC and cloud hardware markets.

Winning technology

Superconducting quantum computers have the most qubits, the lowest error rates, and are scaling the fastest.

Distinctive approach

Proprietary chip architecture accelerates scaling and full-stack strategy shortens path to key business inflection points.

Team to win

8+ year track record of pioneering leadership with multiple industry firsts, 100+ patents and applications, combined with a deep and experienced team across business and technology.

Risk Factors

Certain Risks Related to Rigetti & Co, Inc. - All references to the "Company," "Rigetti," "we," "us" or "our" in this presentation refer to the business of Rigetti & Co, Inc. The risks presented below are certain of the general risks related to the Company's business, industry and ownership structure and are not exhaustive. The list below is qualified in its entirety by disclosures contained in future filings by the Company, or by third parties (including Supernova Partners Acquisition Co II, Ltd.) with respect to the Company, with the United States Securities and Exchange Commission ("SEC"). These risks speak only as to the date of this presentation and we make no commitment to update such disclosure. The risks highlighted in future filings with the SEC may differ significantly from and will be more extensive than those presented below.

- Rigetti is in its early stages and has a limited operating history, which makes it difficult to forecast its future results of operations.
- Rigetti has a history of operating losses and expects to incur significant expenses and continuing losses for the foreseeable future.
- Rigetti may not be able to scale its business quickly enough to meet customer and market demand, which
 could result in lower profitability or cause it to fail to execute on its business strategies.
- Even if the market in which Rigetti competes achieves the forecasted growth, its business could fail to grow at similar rates, if at all.
- Rigetti may not manage its growth effectively.
- Rigetti's operating and financial results forecast relies in large part upon assumptions and analyses
 developed by it. Rigetti has limited insight into customer demand, pricing models and price sensitivities which
 could make it difficult to create reliable business models and accurately forecast growth. If these
 assumptions or analyses prove to be incorrect, its actual operating results may be materially different from
 its forecasted results. Our analysis is based on our technology roadmap, market, competitive landscape and
 other assumptions. Any of these bases may end up being different than anticipated. Unfavorable changes in
 any of these or other factors, most of which are beyond our control, could materially and adversely affect our
 business, prospects, financial results and results of operations.
- Rigetti may need additional capital to pursue its business objectives and respond to business opportunities, challenges or unforeseen circumstances, and Rigetti cannot be sure that additional financing will be available.
- Rigetti's ability to use net operating loss carryforwards and other tax attributes may be limited in connection
 with the business combination or other ownership changes.
- Rigetti has not produced a large-scale quantum computer and face significant barriers in its attempts to
 produce quantum computers, including the need to invent and develop new technology. If Rigetti cannot
 successfully overcome those barriers, its business will be negatively impacted and could fail.
- Rigetti's future generations of hardware being developed to demonstrate narrow quantum advantage and broad quantum advantage, which are important milestones for its technical roadmap and commercialization, are not yet available for customers and may never be available.
- The quantum computing industry is competitive on a global scale and Rigetti may not be successful in competing in this industry or establishing and maintaining confidence in its long-term business prospects among current and future partners and customers.
- There are no assurances that Rigetti will be able to broadly commercialize quantum computers.

- Rigetti relies on access to high performance third party classical computing through public clouds, high
 performance computing centers and on-premises computing infrastructure to deliver performant quantum
 solutions to customers. Rigetti may not be able to maintain high quality relationships and connectivity with
 these resources which could make it harder for it to reach customers or deliver solutions in a cost effective
 manner.
- Rigetti's system depends on the use of certain development tools, supplies, equipment and production methods.
 If it is unable to procure the necessary tools, supplies and equipment to build its quantum systems, or is unable
 to do so on a timely and cost-effective basis, and in sufficient quantities, Rigetti may incur significant costs or
 delays which could negatively affect its operations and business.
- Even if Rigetti is successful in developing quantum computing systems and executing its strategy, competitors in the industry may achieve technological breakthroughs which render its quantum computing systems obsolete or inferior to other products.
- Rigetti may be unable to reduce the cost of developing its quantum computers, which may prevent it from pricing its quantum systems competitively.
- The quantum computing industry is in its early stages and volatile, and if it does not develop, if it develops slower than Rigetti expects, if it develops in a manner that does not require use of Rigetti's quantum computing solutions, if it encounters negative publicity or if Rigetti's solution does not drive commercial engagement, the growth of Rigetti's business will be harmed.
- If Rigetti's computers fail to achieve quantum advantage, its business, financial condition and future prospects may be harmed.
- Rigetti could suffer disruptions, outages, defects and other performance and quality problems with its quantum computing systems, its production technology partners or with the public cloud, data centers and internet infrastructure on which it relies.
- Rigetti may face unknown supply chain issues that could delay the development or introduction of its product and negatively impact its business and operating results.
- If Rigetti cannot successfully execute on its strategy, including in response to changing customer needs and new
 technologies and other market requirements, or achieve its objectives in a timely manner, its business, financial
 condition and results of operations could be harmed.
- Rigetti is highly dependent on its ability to attract and retain senior executive leadership and other key
 employees, such as quantum physicists, software engineers and other key technical employees, which is critical
 to its success. If Rigetti fails to retain talented, highly-qualified senior management, engineers and other key
 employees or attract them when needed, such failure could negatively impact its business.
- Rigetti's future growth and success depend on its ability to sell effectively to customers, which could make achieving revenue targets difficult.
- Rigetti may not be able to accurately estimate the future supply and demand for its quantum computers, which
 could result in a variety of inefficiencies in its business and hinder its ability to generate revenue. If Rigetti fails to
 accurately predict its manufacturing requirements, Rigetti could incur additional costs or experience delays.
- Because Rigetti's success depends, in part, on its ability to expand sales internationally, its business will be susceptible to risks associated with international operations.

Risk Factors (continued)

- Rigetti's international sales and operations subject it to additional risks and costs, including the ability to engage
 with customers in new geographies, exposure to foreign currency exchange rate fluctuations, that can adversely
 affect its business, financial condition, revenues, results of operations or cash flows.
- Rigetti's quantum computing systems may not be compatible with some or all industry-standard software and hardware in the future, which could harm its business.
- Rigetti may rely heavily on future collaborative partners and third parties to develop key, relevant algorithms and programming to make its quantum systems commercially viable.
- System security and data protection breaches, as well as cyber-attacks, could disrupt Rigetti's operations, which
 may damage its reputation and adversely affect its business.
- Unfavorable conditions in Rigetti's industry or the global economy, could limit Rigetti's ability to grow its business
 and negatively affect its results of operations.
- Government actions and regulations, such as tariffs and trade protection measures, may limit Rigetti's ability to
 obtain products from its suppliers or sell its products and services to customers.
- Acquisitions, divestitures, strategic investments and strategic partnerships could disrupt Rigetti's business and harm its financial condition and operating results.
- Rigetti has been, and may in the future be, adversely affected by the global COVID-19 pandemic, its various strains or future pandemics.
- Rigetti's facilities or operations could be damaged or adversely affected as a result of prolonged power outages, natural disasters and other catastrophic events.
- State, federal and foreign laws and regulations related to privacy, data use and security could adversely affect Rigetti.
- Rigetti is subject to U.S. and foreign anti-corruption, anti-bribery and similar laws, and non-compliance with such laws can subject it to criminal or civil liability and harm its business.
- Rigetti is subject to governmental export and import controls that could impair its ability to compete in
 international markets due to licensing requirements and subject it to liability if it is not in compliance with
 applicable laws.
- · Rigetti's business is exposed to risks associated with litigation, investigations and regulatory proceedings.

- Rigetti may become subject to product liability claims, which could harm its financial condition and liquidity if it is not
 able to successfully defend or insure against such claims.
- Rigetti is subject to requirements relating to environmental and safety regulations and environmental remediation
 matters which could adversely affect its business, results of operation and reputation.
- If Rigetti is unable to obtain and maintain patent protection for its products and technology, or if the scope of the
 patent protection obtained is not sufficiently broad or robust, its competitors could develop and commercialize
 products and technology similar or identical to Rigetti's, and Rigetti's ability to successfully commercialize its product
 and technology may be adversely affected. Moreover, the secrecy of its trade secrets could be compromised, which
 could cause Rigetti to lose the competitive advantage resulting from these trade secrets.
- Rigetti's patent applications may not result in issued patents or its patent rights may be contested, circumvented, invalidated or limited in scope, any of which could have a material adverse effect on its ability to prevent others from interfering with the commercialization of its products.
- Rigetti may face patent infringement and other intellectual property claims that could be costly to defend, result in
 injunctions and significant damage awards or other costs (including indemnification of third parties or costly licensing
 arrangements (if licenses are available at all) and limit its ability to use certain key technologies in the future or
 require development of non-infringing products, services, or technologies, which could result in a significant
 expenditure and otherwise harm its business.
- Rigetti relies on certain open-source software in its quantum systems. If licensing terms change, Rigetti's business may be adversely affected.
- Some of Rigetti's intellectual property has been or may be conceived or developed through government-funded
 research and thus may be subject to federal regulations providing for certain rights for the U.S. government or
 imposing certain obligations on it, such as a license to the U.S. government under such intellectual property, "marchin" rights, certain reporting requirements and a preference for U.S.-based companies, and compliance with such
 regulations may limit its exclusive rights and its ability to contract with non-U.S. manufacturers.

Appendix

Summary financial forecast

(\$M)	2021E	2022E	2023E	2024E	2025E	2026E
Total revenue ¹	7	18	34	73	288	594
% growth	39%	142%	92%	113%	293%	106%
(-) Cost of goods sold	(3)	(6)	(10)	(17)	(36)	(69)
Gross profit	5	12	25	56	252	525
% margin	61%	69%	72%	76%	88%	88%
(-) Operating expenses	(41)	(60)	(70)	(86)	(138)	(187)
Depreciation	5	8	13	18	28	42
EBITDA	(31)	(39)	(32)	(12)	142	380
(-) Capital expenditures	(7)	(41)	(33)	(63)	(112)	(170)
EBITDA less capex	(39)	(80)	(66)	(75)	30	210

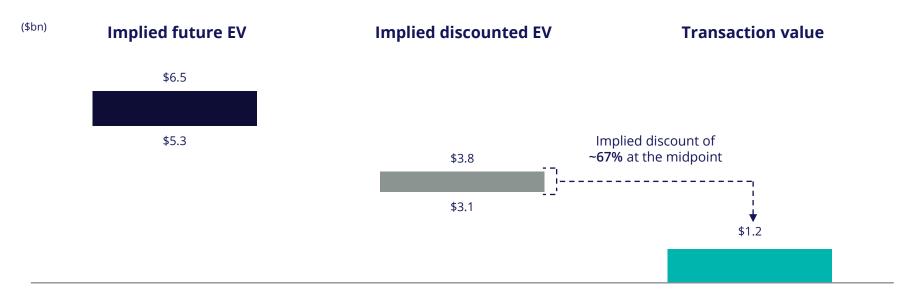
Selected historical financials

(\$ in thousands)

Statement of Operations			Consolidated Balance Sheet			
Year ended January 31,	FY2020	FY2021	January 31,	FY2020	FY2021	
Total revenue	735	5,543	Cash and cash equivalents	309	22,202	
Operating costs and expenses ¹	48,149	39,143	Working capital ²	(33,487)	(1,688)	
Loss from operations	(47,702)	(35,092)	Property and equipment, net	20,040	20,141	
Net loss	(53,816)	(26,127)	Total assets	27,485	49,682	
			Total liabilities	35,104	3,584	
			Convertible redeemable preferred stock	120,794	81,523	
			Total stockholder's deficit	(128,413)	(35,425)	

Operational benchmarking

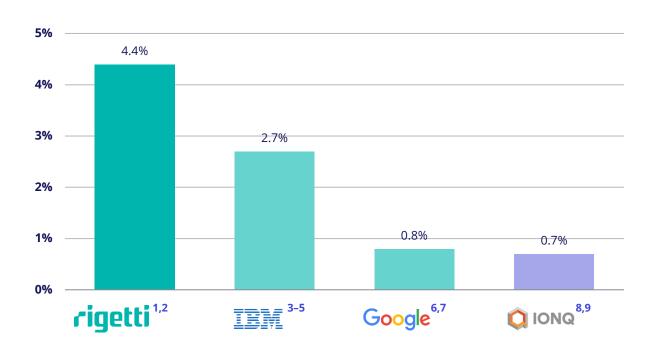
Revenue growth (%) 293% 295% Median: 17% 120% 106% 22% 13% 12% 13% aws 1 rigetti rigetti **IONQ IONQ ◎** INVIDIA Microsoft 2025E 2026E 2025E 2026E 2023E 2023E 2023E 2023E **Gross margin (%)** Median: 60% Median: 68% 88% 88% 89% 86% 68% 68% 51% NA rigetti rigetti aws **ONQ IONQ** ○ INVIDIA Microsoft 2025E 2026E 2025E 2026E 2023E 2023E 2023E 2023E **EBITDA** margin (%) Median: 51% 64% 52% 51% 51% 49% 26% 25% NA rigetti rigetti aws **IONQ IONQ** Microsoft 2025E 2026E 2023E 2023E 2025E 2026E 2023E 2023E Quantum **High-growth** Cloud compute compute infrastructure



Valuation benchmarking

EV / Revenue Median: 10.9x Median: 10.1x 15.9x 11.0x 9.3x 6.0x 4.0x 3.9x 1.9x 1.8x rigetti aws 1 rigetti **O**IONQ **IONQ OVIDIA** Microsoft 2025E 2023E 2026E 2025E 2026E 2023E 2022E 2023E **EV / EBITDA** Median: 21.4x 30.9x 24.1x 24.6x 18.2x 15.1x 8.1x 3.4x 3.0x rigetti aws 1 rigetti **O**IONQ AMD **IONQ ONDIA** Microsoft 2025E 2026F 2022E 2025E 2026E 2023E 2023E 2023E Quantum **High-growth** Cloud compute compute infrastructure

Significant upside potential



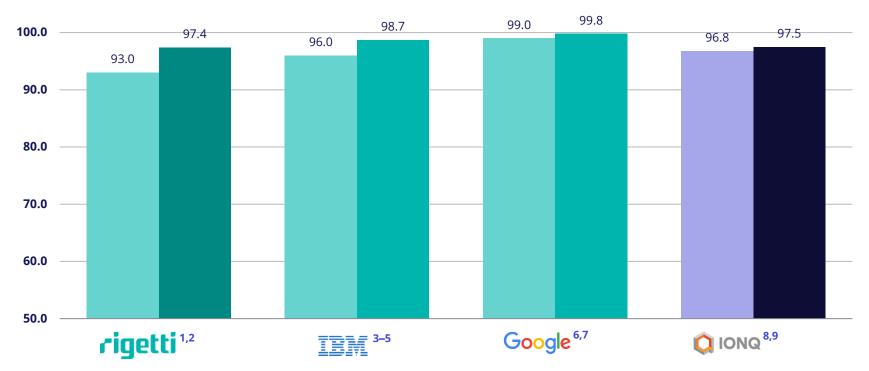
 Rigetti is valued by applying a 2-year forward multiple range of 9.0x – 11.0x, based on current peer multiples, to Rigetti's 2026E revenue of \$594M to arrive at a future EV in 2024 Rigetti's 2024 future EV is then discounted back 3 years at a 20% discount rate to arrive at an implied discounted EV today Transaction is priced at an additional discount

Fastest rate of progress on increasing fidelity

Increase in best demonstrated 2Q median fidelity from June 2017 to June 2021

Rigetti has systematically increased gate fidelity on cloud-deployed systems.

Additional fidelity will be achieved via integrating faster gates and longer coherence.


The achievable gate fidelity for superconductors based on best-shown components is >99.99%, approximately 50x better than requirement for fault-tolerance.

Note Increase is calculated as an absolute percentage increase for 2Q median fidelity

Fastest rate of progress on increasing fidelity

Best demonstrated median 2Q fidelity: June 2017 vs. June 2021

1 Reagor, M., et al. "Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice." Science Advances, vol. 4, no. 2, Feb. 2018, p. eaao3603, arXiv org. doi:10.1126/sciadv.aao3603. 2 Rigetti internal data, March 4, 2021 3."4 Quantum Experience at Maker Faire." IBM Research Blog, 19 May 2017.
4 Wang, Yuanhao, et al. "16-Qubit IBM Universal Quantum Computer Can Be Fully Entangled." Npj Quantum Information, vol. 4, no. 1, Sept. 2018, pp. 1–6. www.nature.com, doi:10.1038/s41534-018-0095-x. 5 Zhang, Eric J., et al. "High-Fidelity Superconducting Quantum Circuit." Nature, vol. 519, no. 7541, Marc. 2015, pp. 66-69. www.nature.com, doi:10.1038/nature12470. 7 Arute, Frank, et al. "Quantum Superconducting Quantum Circuit." Nature, vol. 519, no. 7541, Marc. 2015, pp. 66-69. www.nature.com, doi:10.1038/nature18404. Post. 2016, pp. 505-10. www.nature.com, doi:10.1038/s41596.919-1665. 8 Debnath, S., et al. "Demonstration of a Small Programmable Quantum Computer with Atomic Qubits." Nature, vol. 536, no. 7614, Aug. 2016, pp. 63-68. www.nature.com, doi:10.1038/s41467-019-13534-42.

Partnering on quantum machine learning applications

\$1.1B+
Annual revenue
opportunity by 2026¹

Quantum machine learning integrates quantum algorithms and ML programs by improving predictive accuracy or reducing training time by encoding data in the exponential Hilbert space of the quantum computer

Image classification with Department of Defense

Problem area

Large amounts of satellite data with low quality and missing or incomplete images

Path to advantage

Improved accuracy and speed of classification using QNNs

Operation impact

Enhance rapid decision-making and fill in knowledge gaps by providing more complete, clear image data

Financial risk management with global bank

Example of a problem area

Limited data to create accurate risk models and backtest current models

Path to advantage

Quantum Born Machines for synthetic data generation

Potential operational impact

Testing of trading strategies with a larger number of scenarios to enable enhanced risk management

More applications

- Detect fraudulent financial transactions²
- Accelerate drug discovery by identifying promising drug candidates from high volumes of data³
- Safeguard network systems with autonomous cyberwarfare and adversarial intent prediction⁴

Impact sectors

Aerospace & defense

Healthcare & life sciences

Energy, utilities & climate

Logistics & transportation

Manufacturing

Scientific researc

Financial services

Partnering on optimization applications

\$1.5B+
Annual revenue opportunity by 2026¹

Solve hard, constrained combinatorial optimization problems faster and within a defined error tolerance. The quantum approximate optimization algorithm (QAOA) is a path to quantum supremacy.²

Optimal spectrum allocation with DARPA

Problem area

Establish and maintain communication networks in hostile environments through optimized spectrum allocation

Path to advantage

Use QAOA to solve hard constraint, discrete optimization problems faster than conventional heuristics

Operation impact

Maintain global persistent awareness despite adversarial spectrum tactics and/or resource scarcity

Enabling space exploration with NASA

Problem area

Optimization problems arising in NASA's missions, e.g., interplanetary spacecraft landing controls

Path to advantage

Exploit hybrid quantum-classical models to maximize solvable problem size

Operation impact

Safely realize ambitious space exploration through transformational mission design practices

More applications

- Portfolio optimization over discrete lots and under investment constraints³
- Job sequencing and scheduling, such as single machine scheduling
- Traffic flow optimization for air traffic management
- Vehicle routing including the capacity constraint

Impact sectors

Aerospace & defense

Healthcare & life sciences

Energy, utilities & climate

Logistics & transportation

Manufacturing

cientific researd

Financial services

Partnering on simulation applications

\$1.4B+ Annual revenue opportunity by 2026¹

Simulate quantum mechanical systems exponentially faster to unlock the complexities of nature, such as predicting intractable dynamics at the core of physical models, and estimating physical properties of materials.

Fusion energy with the Department of Energy

Problem Area

Challenge of developing sustainable fusion energy production, mastering non-linear plasma dynamics and control

Path to Advantage

Replicate governing physical mechanics with quantum mechanical effects²

Operation Impact

Design more efficient fusion reactors based on realistic physical modeling

Modeling physical systems with UK government

Example Problem Area

Designing solid-state materials, e.g., batteries, due to strongly correlated electronic behavior

Path to Advantage

Apply hybrid variational techniques to solve electronic structure calculations, mapping exponential entanglements onto quantum native hardware

Potential operational Impact

Practical improvements for battery energy density and lifetime via predictable nano-scale innovations

More applications

- Predicting molecular structures for novel catalysts[®]
- Optimizing chemical reaction dynamics for fertilizers³
- Engineering functional proteins for drug design⁴
- Navigating the nuclear shell model for safer reactor design
- Calculating intractable Monte Carlo in high energy particle physics⁶
- Increasing the efficiency of solar cells via solid-state materials design

Impact sectors

Aerospace & defense

Healthcare & life sciences

Energy, utilities & climate

ogistics & transportation

Manufacturing

Scientific research

Financial services

aul, Supradip, et al. Global Enterprise Quantum Computing Market Opportunity Analysis and Industry Forecast, 2018-2025. Allied Market Research. Lykken, Joseph D. "Quantum Information for Particle Theorists." ArXiv:2010.02931 [Hep-Lat, Physics:Hep-Ph, Physics:Quant-Ph], Dec. 2020. arXiv.org. Cao Yudong, il. "Quantum Computing of an Anatomic National Molecular Science, and the Computational Molecular Science, and the Computation of the Computati