Design and execution of quantum circuits using tens of superconducting qubits and thousands of gates for dense Ising optimization problems
Algorithms & Applications
We develop a hardware-efficient ansatz for variational optimization, derived from existing ansatze in the literature, that parametrizes subsets of all interactions in the Cost Hamiltonian in each layer. We treat gate orderings as a variational parameter and observe that doing so can provide significant performance boosts in experiments. We carried out experimental runs of a compilation-optimized implementation of fully-connected Sherrington-Kirkpatrick Hamiltonians on a 50-qubit linear-chain subsystem of Rigetti Aspen-M-3 transmon processor.
Learn More