Evaluating quantum generative models via imbalanced data classification benchmarks
Algorithms & Applications
A limited set of tools exist for assessing whether the behavior of quantum machine learning models diverges from conventional models, outside of abstract or theoretical settings. We present a systematic application of explainable artificial intelligence techniques to analyze synthetic data generated from a hybrid quantum-classical neural network adapted from twenty different real-world data sets, including solar flares, cardiac arrhythmia, and speech data.
Learn More